Optimization

Optimization is a crucial aspect of machine learning that involves finding the best parameters and hyperparameters for models to achieve optimal performance.

Gradient Descent

Basic Concepts

  • Cost Functions
  • Gradients and Derivatives
  • Learning Rate
  • Convergence

Variants

  • Batch Gradient Descent
  • Stochastic Gradient Descent
  • Mini-batch Gradient Descent
  • Momentum

Advanced Optimizers

  • Adam
  • RMSprop
  • AdaGrad
  • AdaDelta

Hyperparameter Tuning

Manual Tuning

  • Grid Search
  • Random Search
  • Bayesian Optimization
  • Successive Halving

Automated Tuning

  • Hyperopt
  • Optuna
  • Ray Tune
  • AutoML

Strategies

  • Cross-Validation
  • Hold-out Validation
  • Early Stopping
  • Learning Rate Scheduling

Regularization

L1 and L2 Regularization

  • Lasso (L1)
  • Ridge (L2)
  • Elastic Net
  • Group Lasso

Other Techniques

  • Dropout
  • Batch Normalization
  • Weight Decay
  • Early Stopping

Model Architecture

Neural Network Architecture

  • Layer Design
  • Activation Functions
  • Skip Connections
  • Network Depth and Width
  • Neural Architecture Search
  • AutoML
  • Evolutionary Algorithms
  • Reinforcement Learning

Advanced Optimization

Second-Order Methods

  • Newton's Method
  • Quasi-Newton Methods
  • Natural Gradient Descent
  • Hessian-Free Optimization

Distributed Optimization

  • Data Parallelism
  • Model Parallelism
  • Asynchronous SGD
  • Parameter Servers

AutoML and Pipelines

AutoML

  • Automated Feature Engineering
  • Model Selection
  • Hyperparameter Optimization
  • Neural Architecture Search

ML Pipelines

  • Pipeline Design
  • Pipeline Optimization
  • Feature Selection
  • Model Stacking

Production Optimization

Model Compression

  • Quantization
  • Pruning
  • Knowledge Distillation
  • Model Compression

Deployment Optimization

  • Model Serving
  • Batch Inference
  • Real-time Inference
  • Edge Deployment