Unsupervised Learning

Unsupervised learning is a type of machine learning where the algorithm learns patterns from unlabeled data.

This section covers the main concepts and techniques in unsupervised learning.

Clustering

K-means Clustering

  • Algorithm Overview
  • Centroid Initialization
  • Choosing K
  • Evaluation Metrics

Hierarchical Clustering

  • Agglomerative Clustering
  • Divisive Clustering
  • Linkage Methods
  • Dendrogram Visualization

Density-Based Clustering

  • DBSCAN
  • OPTICS
  • Mean-Shift
  • Density Estimation

Advanced Clustering Methods

  • Gaussian Mixture Models
  • Spectral Clustering
  • Affinity Propagation
  • HDBSCAN

Dimensionality Reduction

Linear Methods

  • Principal Component Analysis (PCA)
  • Linear Discriminant Analysis (LDA)
  • Factor Analysis
  • Independent Component Analysis (ICA)

Non-linear Methods

  • t-SNE
  • UMAP
  • Kernel PCA
  • Locally Linear Embedding

Autoencoders

  • Basic Autoencoders
  • Denoising Autoencoders
  • Variational Autoencoders
  • Sparse Autoencoders

Association Rule Learning

Market Basket Analysis

  • Support and Confidence
  • Lift and Conviction
  • Rule Generation
  • Rule Evaluation

Algorithms

  • Apriori Algorithm
  • FP-Growth
  • ECLAT
  • Association Rule Mining

Anomaly Detection

Statistical Methods

  • Z-score Method
  • Modified Z-score
  • Interquartile Range
  • Statistical Tests

Machine Learning Methods

  • Isolation Forest
  • One-Class SVM
  • Local Outlier Factor
  • Autoencoders for Anomaly Detection

Evaluation and Validation

Clustering Evaluation

  • Silhouette Score
  • Davies-Bouldin Index
  • Calinski-Harabasz Index
  • Adjusted Rand Index

Dimensionality Reduction Evaluation

  • Reconstruction Error
  • Explained Variance
  • Trustworthiness
  • Continuity

Applications

Real-world Applications

  • Customer Segmentation
  • Document Clustering
  • Image Compression
  • Fraud Detection
  • Recommendation Systems