Text Summarization
Text summarization is the task of creating concise and coherent summaries of longer documents while preserving key information and overall meaning. It can be either extractive (selecting existing sentences) or abstractive (generating new text).
Core Concepts
Types of Summarization
-
Extractive Summarization:
- Selects important sentences from source
- Maintains original wording
- Easier to implement and evaluate
-
Abstractive Summarization:
- Generates new text
- Requires language understanding
- More human-like summaries
Implementation Approaches
1. Extractive Summarization
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
class ExtractiveSummarizer:
def __init__(self):
self.stop_words = set(stopwords.words('english'))
self.vectorizer = TfidfVectorizer(stop_words='english')
def summarize(self, text, num_sentences=3):
# Split into sentences
sentences = sent_tokenize(text)
# Calculate sentence scores
tfidf_matrix = self.vectorizer.fit_transform(sentences)
sentence_scores = tfidf_matrix.sum(axis=1).A1
# Select top sentences
top_indices = sentence_scores.argsort()[-num_sentences:]
summary = ' '.join([sentences[i] for i in sorted(top_indices)])
return summary
2. Abstractive Summarization
from transformers import (
BartForConditionalGeneration,
BartTokenizer
)
def abstractive_summarize(text):
tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
model = BartForConditionalGeneration.from_pretrained(
'facebook/bart-large-cnn'
)
inputs = tokenizer(text,
return_tensors='pt',
max_length=1024,
truncation=True)
summary_ids = model.generate(
inputs['input_ids'],
max_length=150,
min_length=40,
length_penalty=2.0,
num_beams=4,
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0],
skip_special_tokens=True)
return summary
Advanced Features
1. Topic-Based Summarization
from gensim.summarization import summarize
from gensim.models import LdaModel
from gensim.corpora import Dictionary
def topic_based_summary(text, num_topics=3):
# Preprocess text
sentences = sent_tokenize(text)
words = [preprocess(sent) for sent in sentences]
# Create dictionary and corpus
dictionary = Dictionary(words)
corpus = [dictionary.doc2bow(word) for word in words]
# Train LDA model
lda = LdaModel(corpus,
num_topics=num_topics,
id2word=dictionary)
# Get topic distribution for each sentence
sentence_topics = [lda[doc] for doc in corpus]
# Select sentences based on topic coverage
selected = select_diverse_sentences(sentences,
sentence_topics)
return ' '.join(selected)
2. Multi-Document Summarization
class MultiDocSummarizer:
def __init__(self):
self.single_doc_summarizer = ExtractiveSummarizer()
def summarize(self, documents, summary_length=200):
# Get individual summaries
summaries = [
self.single_doc_summarizer.summarize(doc)
for doc in documents
]
# Combine and remove redundancy
combined = self.merge_summaries(summaries)
# Trim to desired length
return self.trim_summary(combined, summary_length)
Best Practices
1. Preprocessing
- Clean input text
- Handle special characters
- Normalize content
2. Model Selection
- Consider input length
- Evaluate output requirements
- Balance quality and speed
3. Evaluation
- Use ROUGE metrics
- Human evaluation
- Check for factual accuracy
Implementation Example
class HybridSummarizer:
def __init__(self, mode='auto'):
self.mode = mode
self.extractive = ExtractiveSummarizer()
self.abstractive = BartForConditionalGeneration.from_pretrained(
'facebook/bart-large-cnn'
)
self.tokenizer = BartTokenizer.from_pretrained(
'facebook/bart-large-cnn'
)
def summarize(self, text, max_length=150):
if self.mode == 'auto':
# Choose method based on text length
if len(text.split()) > 1000:
return self.extractive_summarize(text)
else:
return self.abstractive_summarize(text)
elif self.mode == 'extractive':
return self.extractive_summarize(text)
else:
return self.abstractive_summarize(text)
def extractive_summarize(self, text):
return self.extractive.summarize(text)
def abstractive_summarize(self, text):
inputs = self.tokenizer(text,
return_tensors='pt',
max_length=1024,
truncation=True)
summary_ids = self.abstractive.generate(
inputs['input_ids'],
max_length=150,
min_length=40,
length_penalty=2.0,
num_beams=4,
early_stopping=True
)
return self.tokenizer.decode(summary_ids[0],
skip_special_tokens=True)
Applications
-
Content Curation:
- News summarization
- Document abstraction
- Research paper summaries
-
Information Management:
- Meeting notes
- Email digests
- Report generation
-
Knowledge Discovery:
- Literature review
- Trend analysis
- Content aggregation
Challenges
-
Content Selection:
- Identifying key information
- Maintaining coherence
- Handling redundancy
-
Quality Control:
- Factual accuracy
- Grammatical correctness
- Semantic consistency
-
Domain Adaptation:
- Technical content
- Multiple languages
- Domain-specific terminology
Summary
Text summarization is a complex task that requires balancing information retention with conciseness. Modern approaches, particularly neural models, have significantly improved summarization quality, though challenges remain in ensuring factual accuracy and domain adaptation.